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Abstract. Models currently used to estimate patterns of species co-occurrence while 
accounting for errors in detection of species can be difficult to fit when the effects of covariates 
on species occurrence probabilities are included. The source of the estimation problems is the 
particular parameterization used to specify species co-occurrence probability. We develop a 
new parameterization for estimating patterns of co-occurrence of interacting species that 
allows the effects of covariates to be specified quite naturally without estimation problems. In 
our model, the occurrence of one species is assumed to depend on the occurrence of another, 
but the occurrence of the second species is not assumed to depend on the presence of the first 
species. This pattern of co-occurrence, wherein one species is dominant and the other is 
subordinate, can be produced by several types of ecological interactions (predator–prey, 
parasitism, and so on). 

A simulation study demonstrated that estimates of species occurrence probabilities were 
unbiased in samples of 50–100 locations and three surveys per location, provided species are 
easily detected (probability of detection 
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INTRODUCTION	 

Distinguishing patterns of co-occurrence between 
species is an important first step in identifying the 
potential for ecological interactions, as well as for 
understanding the role that such interactions may play 
in creating spatial heterogeneity in community compo-

sition. Competition, predation, and parasitism are all 
examples of ecological interactions in which one species 
is negatively affected by another. In communities where 
prey and predator species also potentially compete with 
one another, intraguild predation can influence the 
composition of species in complex ways (Polis et al. 
1989). The outcome of these interactions can vary 
depending on the intensity of interspecific competition	
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(Chase et al. 2002). However, such negative interactions, 
either alone or in combination with one another, can 
yield patterns of co-occurrence wherein one species is 
present less often in local habitats occupied by the other 
species.

MacKenzie et al. (2004) developed a useful model for 
estimating probabilities of co-occurrence between pairs 
of species while accounting for errors in detection of 
each species. In addition, this model can be used to 
determine whether the presence of one species affects the 
detectability of the other species. In typical applications 
of this model, species occurrence and detection proba
bilities are specified as functions of observed covariates, 
such as habitat characteristics or sampling effort, that 
are thought to be informative of the spatial heterogene
ity in occurrence and detection of each species. The 
effects of these covariates are formulated as logit-scale 
regression parameters. Unfortunately, MacKenzie et al. 
(2004) noted that numerical problems can occur when 
attempting to estimate these parameters due to restric
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tions that must be imposed on their values. These 
restrictions stem from the particular parameterization of 
species co-occurrence and detection adopted by 
MacKenzie et al. (2004). 
Here, we develop a new parameterization for estimat

ing patterns of co-occurrence of interacting species. This 
parameterization allows the effects of covariates to be 
specified without the estimation problems described by 
MacKenzie et al. (2004). In our approach, the occur
rence of one species is assumed to depend on the 
occurrence of another, but the occurrence of the second 
species is not assumed to depend on the presence of the 
first species. This pattern of co-occurrence, wherein one 
species is dominant and the other is subordinate, can be 
produced by several types of ecological interactions, as 
described earlier. In our model, the conditional proba
bilities of detection are treated similar to occurrence 
probabilities, that is, detection probabilities of the 
subordinate species are allowed to differ depending on 
whether or not a site is occupied by the dominant 
species. 
Using simulated data, we show that our model of co

occurrence can provide unbiased estimates of its 
parameters. We illustrate our approach by analyzing 
patterns of co-occurrence of treefrog species in southern 
Florida, USA. The Cuban treefrog (Osteopilus septen
trionalis), a nonnative, introduced species in Florida, is 
reported to be a voracious predator of native treefrog 
species (Meshaka et al. 2000, Smith 2005). Cuban 
treefrogs may also compete with native treefrogs for 
food owing to the high degree of dietary overlap among 
these species (Meshaka 2001). Although the Cuban 
treefrog is believed to have expanded its range in Florida 
primarily through human facilitation (Meshaka 1996), 
this species also appears to be invading less-traveled 
natural areas. Thus, Cuban treefrogs represent a 
potential threat to native treefrog species in these areas, 
but the ecological consequences of the spread of this 
invasive species are not known. We use our model of 
species co-occurrence to assess whether the occurrence 
probabilities of native treefrog species differ in the 
presence and absence of Cuban treefrogs while account
ing for differences in occurrence associated with 
differences in habitat. We also explore the possibility 
that detection probabilities of native treefrog species 
differ between sites with and without Cuban treefrogs. 
Such differences could be induced by cryptic behavior of 
native species attempting to avoid predation by Cuban 
treefrogs. 

A MODEL FOR ESTIMATING CO-OCCURRENCE
 

OF INTERACTING SPECIES
 

We describe a statistical model for estimating patterns 
of co-occurrence between a single dominant species and 
one or more subordinate species when observations of 
all species are subject to imperfect detection. The model 
extends ideas developed for the analysis of single-species 
occurrence (MacKenzie et al. 2002) to the analysis of 

data from multiple species. We formulate the co
occurrence of species in a way that honors our assumed 
interactions between species. Specifically, we consider 
situations where the occurrence of each subordinate 
species is assumed to depend on the occurrence of a 
dominant species, but the presence of the dominant 
species is independent of that of each subordinate. An 
example exists in predator–prey interactions wherein the 
mean occurrence of the prey species is reduced by the 
presence of the predator species but the mean occurrence 
of the predator is independent of the presence of any 
single prey species. For ease of presentation we describe 
the model using the terms predator and prey, instead of 
dominant and subordinate species, even though our 
model assumptions can be applied to many types of 
ecological interactions. 
We develop the model using a hierarchical (or state-

space) formulation that includes distinct components for 
species occurrence and species detection given occur
rence. This approach allows us to build models of 
predator and prey species occurrences and their poten
tial ecological determinants (e.g., habitat or other site-
level covariates) independent of the effects of imperfect 
detection and sampling (Royle and Dorazio 2008). The 
relevance of these latter effects is specified in a second 
component of the model, the observation process, 
wherein detections of species are modeled conditional 
on latent parameters for predator and prey species 
occurrences. This hierarchical approach provides a 
generic framework for the construction of occupancy 
models, and these models can be fit to data using either 
classical (frequentist) or Bayesian methods (see 
Appendix). 

Modeling species occurrences 

We begin by describing a model of species occurrences 
for a single sample location. For the moment, we 
suppress the location subscript on model parameters. 

 A Let z and zB denote a pair of binary random variables 
for the occupancy state of prey species A and predator 
species B, respectively (wherein z ¼ 1 indicates species 
presence and z ¼ 0 indicates species absence).  Thus, (zA, 
zB) ¼ (0, 1) corresponds to an observation wherein 
species A is absent and species B is present. For ease of 
presentation, we describe the model with only one prey 
species; however, any number of prey species can be 
included simply by adding parameters to the model for 
those species. This flexibility is attributed to the manner 
in which we model associations between predator and 
prey species occurrences. 
We use three parameters to model the joint distribu

tion of occupancy states of species A and B [i.e., to 
 model (zA, zB)]: 

  1) w B ¼ Pr(zB ¼ 1) ¼ probability of occurrence (¼ 
presence) of predator species B; 

 w AjB 2) ¼ A  Pr(z ¼ 1 j zB¼ 1) ¼ conditional probability 
of occurrence of prey species A given that predator 
species B is present; 
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 3) w AjB̄¼ A Pr(z ¼ 1 j zB¼ 0) ¼ conditional probability 
of occurrence of prey species A given that predator 
species B is absent. 
Using these parameters, the joint probability of the 

occupancy states of species A and B can be expressed as 
a function of their marginal and conditional probabil-
ities of occurrence since Pr(z A, zB ) ¼  Pr(zA j z B)Pr(zB ). 
Therefore, we model the joint distribution of occupancy 
states of species A and B as a product of the following 
two Bernoulli processes: 

zB w B ; Bernoulli w Bj ð Þ 

zA j zB; w AjB; w AjB̄ ; Bernoulli
 
zBw AjB þ ð1 
�

� BÞw AjB̄
� 

In this way, the occupancy state of species A depends 
explicitly on that of species B. Biologically speaking, this 
construction implies that prey species A is present with 
one probability (w AjB) in the presence of predator B and 
with another probability (w AjB̄) in the absence of the 
predator. On the other hand, if the occurrence of species 
A does not depend on whether species B is present or 
absent, this alternative modeling assumption can be 
specified simply by assuming w AjB ¼ w AjB̄, that is, by 
assuming a restricted version of the model of predator– 
prey association. 

Modeling species detections 

As with other occupancy-based approaches, we 
assume that J . 1 replicate observations are made 
independently at each of n sample locations and that the 
duration of sampling is sufficiently short that the 
occupancy state of a species is fixed at each location 
during the survey. Within-site replication provides the 
information needed to compute estimates of both species 
occurrence and species detection probabilities. Limits on 
duration of the survey satisfy the standard assumption 
of site-specific, demographic closure in occupancy state. 
Let y ¼ (y1, y2, . . . , yj) denote an encounter history 

composed of J binary observations that indicate whether 
a species was detected (yj ¼ 1) or not detected (yj ¼ 0) 
during the jth observation of the sample location. For 
example, y ¼ (0, 1, 0, 1, 0) represents the history of a 
species that was detected twice (during the second and 
fourth observations) in J ¼ 5 replicate surveys of the 
sample location. We denote the encounter histories of 
species A and  B by y A and yB , respectively. 

Our ability to detect a species at any site depends on 
whether that species is present at the site. Therefore, we 
specify a model of each species’ encounter history 
conditional on the binary occupancy state (present or 
absent) of that species. Furthermore, we assume that the 
J observations are made independently, which is 
consistent with our sampling protocol. Such assump

tions are common in models of species occurrence that 
account for imperfect detectability of animals 
(MacKenzie et al. 2006, Royle and Dorazio 2008). 

Given these assumptions, each element of the 
encounter history of predator species B is modeled as 
follows: 

yB z B; p B ; Bernoulli zB p Bj ð Þ
B where  p ¼ Pr(yB ¼ 1 j  zB ¼ 1) denotes the conditional 

probability that species B is detected during a single 
observation of the sample location, given that this 
species is present. Thus, if the location is unoccupied by 
species B (i.e.,  zB ¼ 0), then yB ¼ 0 with probability 1; 
otherwise, species B is   detected with probability pB

during each observation. 
The detection probability of the prey species is 

assumed to depend on whether the predator species is 
present or absent. Such differences in detection could be 
attributed to a behavioral response of the prey, being 
more difficult to detect in the presence of the predator. 
Whatever the source, we include two different param

eters for prey detection probabilities: 
1) pA jB ¼ Pr(y A ¼ 1 j z A ¼ 1, z B ¼ 1) ¼ conditional 

probability that prey species A is detected during a single 
observation of the sample location, given that species A 
and predator species B are both present; 

2) pAjB̄ ¼    Pr(yA ¼ 1 j zA ¼ 1, zB ¼ 0) ¼ conditional 
probability that prey species A is detected during a single 
observation of the sample location, given that species A 
is present and predator species B is absent. 

Using these parameters, each element of the encounter 
history of species A is modeled as follows: 

 z : 

A A B A B A B̄y z ; z ; p j ; p jj

; Bernoulli 
�

z A zBp AjB 
n 

þ
�
1 � zB

� 
p AjB̄

o� 
: 

 

  Thus, if the location is unoccupied by species A (i.e., zA

¼  0), then yA ¼ 0 with probability 1; otherwise, species A 
is detected with probability pA jB or p AjB̄ during each 
observation, depending on the presence or absence of 
the predator species B. Note that if the detection of prey 
species A does not depend on whether species B is 
present or absent, this alternative modeling assumption 
can be specified simply by assuming p AjB¼ p AjB̄, that is, 
by assuming a restricted version of the model of 
predator–prey association. 

Modeling effects of covariates on probabilities 
of species occurrence and detection 

The occurrence of a prey species is unlikely to depend 
solely on whether its predator is present or absent at a 
particular sample location. Other factors, such as 
habitat characteristics, also may be important in 
determining the occurrence of the prey and the predator 
species. Moreover, these factors can differ between 
species. For example, in our survey of treefrogs (see 
Example: treefrog species in southern Florida) the mean 
occurrence of the predator species (Cuban treefrog) is 
expected to decline with distance from the point of 
introduction of this nonnative species. The occurrences 
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of both native and nonnative species may depend on a 
sample location’s habitat: pine savanna (relatively dry) 
or swamp forest (relatively wet). 

The detectability of a prey species also may depend on 
factors other than presence or absence of the predator. 
In our treefrog survey, we expect air temperature at the 
time and location of sampling to be associated with the 
probabilities of detection of both prey and predator 
species. Our expectation is that the native treefrog 
species were less active and harder to detect at lower 
temperatures than at higher temperatures. 

Here we introduce notation to include the effects of 
site-level covariates on probabilities of species occur
rence and the effects of site- or replicate-level covariates 
on conditional probabilities of species detection. We use 
the covariates described above as examples to illustrate 
our modeling approach. Let i index the sample location 
(i ¼ 1, . . . , n) and j index a replicate observation from 
each location ( j ¼ 1, . . . , J ). Given this notation, zB

i 

denotes a binary random variable for occurrence of 
predator species B at location i and w Bi denotes the 
probability of occurrence of species B at that location. 
The effects of longitude and habitat on w Bi are

formulated as logit-scale parameters as follows: 

where tempij indicates the centered and scaled temper

ature observed during the jth observation of sample 
location i. Therefore, the parameters aB

01 and aB
02 can be 

interpreted as the logit-scale probabilities of detection of 
species B in pine savanna and swamp forest habitats, 
respectively, at the average temperature observed during 
the entire survey. 
We formulate a model of the detection probabilities of 

prey species A similarly, except that we also include its 
dependence on the occupancy state of the predator at 
the ith sample location: 

logit pA aA zB aA 1ij 01 i 02ð Þ ¼ þ ð  zB aAtemp : i 1 ij� Þ þ

Thus, aA and aA correspond to logit-scale parameter01 02 

izations of the conditional probabilities of detection of 
species A with and without predators ( pA jB and  

¯
pAjB, 

respectively) at the average temperature observed during 
the entire survey. 
Our hierarchical model contains many latent param

eters; however, the model can be fitted using either 
classical methods (i.e., maximizing the marginal likeli
hood obtained by removing latent parameters by 
integration [see Appendix]) or Bayesian methods (see 
Supplement). 

logit w B bB B 
i 01pinei b02 1ð Þ ¼ þ ð Bpinei b1 loniÞ þ � SIMULATION STUDY 

where pinei indicates the habitat (1 ¼ pine savanna, 0 ¼ 
swamp forest) and loni indicates the longitude of the ith 
sample location. The observed values of longitude are 
centered and scaled to have zero mean and unit 
variance; therefore, the parameters bB and bB 

01 02 can be 
interpreted as the logit-scale probabilities of occurrence 
of species B in pine savanna and swamp forest habitats, 
respectively, at the average longitude of the sample. 
We specify a model of site-specific occurrence 

probability of prey species A similarly, except that we 
also must include its dependence on occupancy state of 
the predator. Let w Ai denote the probability of occur-
rence of prey species A at sample location i. The effects 
of predator occupancy state and habitat on w Ai are

formulated as logit-scale parameters as follows: 

In this section we describe a simulation study that was 
conducted to evaluate the performance of our model-

based estimator of species co-occurrence. In the study, 
we considered the range of sample sizes (number of 
sample locations n and number of surveys per location 
J ), detection probabilities, and probabilities of occur
rence and co-occurrence used in the simulations of 
MacKenzie et al. (2004). Doing so allowed us to 
compare our estimator of co-occurrence with that of 
MacKenzie et al. (2004); it also allowed us to make some 
recommendations regarding survey design. 

Methods 

For each combination of sample sizes and model 
parameters, 1000 data sets were randomly generated 
using the assumptions of our model of co-occurrence 
and detection. As in the simulations of MacKenzie et al. 
(2004), we considered samples from n ¼ 50, 100, or 200 
locations and J ¼ 3 or 5 replicate surveys per location. 
For simplicity, the conditional probabilities of detection 
( pB , pA jB  

¯
and pA jB) were assigned equal values of 0.214 

or 0.5. 
In the model of MacKenzie et al. (2004), w AB denotes 

the joint probability of occurrence of two species (A and 
B). In our model this probability is denoted using the 
product of conditional and marginal probabilities of 

 occurrence: wAB species ¼ w AjBw B. The simulations of 
MacKenzie et al. (2004) included the following values of 
w AB: 0.08, 0.24, 0.4, and 0.6125. The first two of these 
values were paired with unconditional probabilities of 
occurrence of w A ¼w B ¼ 0.4; the latter two values of w AB 

were paired A with higher occurrence probabilities, w ¼ 

logit w A bA zB pine bA 
i 1i 01 i 02ð Þ ¼ þ ð  � z BÞpinei i

BbA 
11z 1i þ ð A bpinei 12 1 Þ þ ð Bz 1i Þð  � pinei :Þ� �

Thus, bA and bA 
01 02 correspond to logit-scale parameter

izations of the conditional probabilities of occurrence of 
species A with and without predators (w AjB and w AjB̄, 
respectively) in pine savanna habitat. Similarly, bA 

11 and

bA 
12 correspond to logit-scale parameterizations of these 

probabilities in swamp forest habitat. 
Let pB

ij denote the conditional probability of detection 
of predator species B during the jth replicate observation 
of sample location i. We model the effects of habitat and 
air temperature on pB

ij on the logit-scale, as we did earlier 
for site-specific occurrence probability: 

logitðp BÞ ¼ a B pinei þ a B 
ij 01 02 1ð Bpinei a 1 tempijÞ þ �
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FIG. 1. Simulation-based approximations of relative (indicated by hat) bias of our estimator of the probability of co-occurrence 
w AB between two species (A and B) as a function of the true value of w AB. Symbols indicate number of sample locations n (square 
50, circle ¼ 100, triangle 200). Panels correspond to different combinations of detection probability and number of replicate

¼ 
 

surveys (A, p 
¼ 

¼ 0.214, J ¼ 3; B, p ¼ 0.5, J ¼ 3; C, p ¼ 0.214, J ¼ 5; D, p ¼ 0.5, J ¼ 5). 

w B ¼ 0.7. These combinations of occurrence and co-
occurrence probabilities were assumed to reflect either a 
strong association or a strong disassociation between 
occurrences of species A and B. 
In our simulations, we used the same unconditional 

probabilities of occurrence used by MacKenzie et al. 
(2004); however, our probabilities of co-occurrence w AB 

differed slightly.  To be specific, we selected values of w AB

needed to make the odds ratio of the conditional 
probabilities w AjB and w AjB̄ equal to either 4 or 1/4. 
Therefore, values of w AB were selected so that the odds 
of occurrence of species A were four times higher (or 
four times lower) in the presence of species B than in the 
absence of this species. To summarize, we used the 
following four combinations of fw A  w B , , w ABg in our 
simulations: f0.4, 0.4, 0.08610g, f0.4, 0.4, 0.23837g, 
f0.7, 0.7, 0.43885g, f0.7, 0.7, 0.55397g. 

We computed maximum likelihood estimates of the 
parameters of our model (w AjB

¯ ¯
, w AjB , w B, pA jB, pA jB, pB ) 

for each set of simulated data. These estimates were 
computed without assuming any restrictions on the 
parameters, just as in the simulations of MacKenzie et al. 
(2004). The relative bias of the maximum likelihood 
estimator of co-occurrence probability was approximat

ed by expressing the difference between the average of 
the 1000    simulated estimates of w AB (say, ŵE( AB)) and 
the data-generating value of w AB as a proportion (i.e., 
(E(ŵAB) – w  AB)/w AB). We excluded simulations in which 
the observed information matrix was nearly singular 
(reciprocal condition number ,0.0001) and therefore 
not invertible, as done by MacKenzie et al. (2004). These 

cases typically were associated with estimates of occur-
rence parameters near their boundary values (0 or 1). 

Results

The results of our simulation study are similar to 
those reported by MacKenzie et al. (2004). Our model-

based estimator of co-occurrence probability w AB was 
unbiased in most of the simulations except those with 
low sample size (n 50 or 100 and J 3) and low ¼ ¼ 
detection probability ( p ¼ 0.214; Fig. 1). In these cases 
the bias was highest at the lowest co-occurrence 
probability (w AB 0.08610), which corresponds to ¼ 
conditional occurrence probabilities of w AjB 0.215 ¼ 
(for species A in the presence of species B) and w AjB̄ ¼ 
0.523 (for species A in the absence of species B). At all 
co-occurrence probabilities, the bias decreased with
increases in the number of sample locations, which has 
important implications for survey design     (see 
Discussion).

EXAMPLE: TREEFROG SPECIES
 

IN SOUTHERN FLORIDA
 

Methods 

During 2007–2008, we surveyed natural areas of 
southern Florida for the purpose of estimating patterns 
of co-occurrence between Cuban treefrogs and native 
treefrog species. Sampling was conducted at 107 sites 
across Picayune State Forest, Fakahatchee Strand 
Preserve State Park, Florida Panther National Wildlife 
Refuge, and Big Cypress National Preserve in Collier 
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FIG. 2. Maps of sample locations. (A) Locations where green treefrogs and Cuban treefrogs were detected either alone or 
together. (B) Locations where squirrel treefrogs and Cuban treefrogs were detected either alone or together. The inset map indicates 
the study area location in southern Florida and the location of Florida in the United States. 

County, southwest Florida, USA (Fig. 2). Sites were 
chosen from randomly selected points within one km of 
unpaved roads, our primary means of access. Sites were 
located in the two most abundant habitat types in which 
treefrogs are normally found in the study area: pine 
savanna and swamp forest (Madden et al. 1999). Pine 
savanna sites have a canopy of south Florida slash pine 
(Pinus elliottii var. densa) with a shrubby understory 
dominated by wax myrtle (Myrica cerifera) and saw 
palmetto (Serenoa repens). Pine savannas are rarely 
inundated during the wetter summer months and are 
maintained with frequent fire (Madden et al. 1999). 
Swamp forest sites are typically cypress strands 
(Taxodium ascendens and T. distichum) but also include 
mixed hardwood (Quercus spp., Acer rubrum, an

Fraxinus caroliniana) and sites dominated by willow 

(Salix caroliniana) or cabbage palm (Sabal palmetto). 
Swamp forests are usually inundated for three or more 
months during the wet summer (Duever 2005). Because 
the original source of Cuban treefrogs in this area is 
believed to be to the west near Naples, Florida, we used 
longitude of each sample location, along with habitat 
type, as a covariate of occurrence of Cuban treefrogs. 
Each of the 107 sites was sampled for treefrogs three 

times during a period of 3–105 days (mean ¼ 24 days) 
between February 2007 and June 2008. We believe the 
period between the first and last sample of each site was 
sufficiently short that demographic closure to changes in 
occupancy state may safely be assumed for each site. 
During each visit treefrogs were sampled by at least two 
experienced observers for one person-hour using a 
standard, nighttime, visual encounter survey technique 

d  



TABLE 1. Comparison of models fit to the detections of Cuban treefrogs, green treefrogs, and squirrel treefrogs. 

Cuban treefrog Native treefrogs 
Number Probability 

Model w p w p of parameters �log L BIC of model 

1 
2 
3 

hab þ lon 
hab þ lon 
lon 

temp 
constant 
temp 

pred 
pred 
pred 

temp 
temp 
temp 

13 
12 
12 

432.1300 
432.1599 
433.4797 

925.01 
920.39 
923.03 

0.024 
0.246 
0.066 

4 lon constant pred 3 hab temp 15 431.7846 933.66 ,0.001 
5 
6 

lon 
lon 

constant 
constant 

pred 
pred 

pred þ temp 
temp 

13 
11 

432.5218 
433.5421 

925.79 
918.49 

0.017 
0.638 

7 lon constant hab temp 11 450.4996 952.40 ,0.001 
8 lon constant pred constant 9 442.4524 926.96 0.009 
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Notes: Models differ by their effects of covariates (hab ¼ habitat, lon ¼ longitude, temp ¼ air temperature, pred ¼ occurrence of 
Cuban treefrogs) on probabilities of species occurrence w and species detection p. The maximized log-likelihood function is denoted 
by log L. Model comparisons are based on the Bayesian information criterion (BIC), which is used to approximate the posterior 
model probability. 

(Crump and Scott 1994). Observers used high-power 
headlamps to search the area within a circular plot of 20 
m radius (1257 m2). To be certain of species identifica
tions, attempts were made to capture every individual 
treefrog that was detected. Body length (snout-to
urostyle distance measured to the nearest mm) was 
recorded for each captured frog, and basic weather data 
(air temperature and relative humidity) were recorded 
during each visit to every sample site. 

Results 

To illustrate our model of co-occurrence, we analyzed 
the detections of Cuban treefrogs and two native species, 
the green treefrog (Hyla cinerea) and the squirrel 
treefrog (H. squirella). During the surveys we observed 
193 Cuban treefrogs at 36 of the 107 sample locations 
(Fig. 2). We observed 171 and 568 green and squirrel 
treefrogs at 52 and 77 of the sample locations, 
respectively. The mean length of Cuban treefrogs 
captured during our sampling was 38.6 mm (SD 
¼10.9). The mean length of green treefrogs was 30.3 
mm (SD ¼ 10.6), and the mean length of squirrel 
treefrogs was 22.6 mm (SD ¼ 4.9). 
We compared eight plausible models of the data using 

the Bayesian information criterion (BIC) to approximate 
posterior model probabilities (Table 1). The model with 
the lowest BIC value (918.49) and the highest posterior 
probability (0.638) assumes that probabilities of occur
rence of the native treefrog species depend only on the 
occupancy status of Cuban treefrogs and that the 
probability of occurrence of Cuban treefrogs is a 
function of longitude. In addition, this model assumes 
that detection probabilities of native treefrog species 
increase with air temperature and that the probability of 
detection of Cuban treefrogs is constant. The model with 
the second highest posterior probability (0.246) contains 
an identical set of covariates except that habitat is also 
included as a covariate of occurrence of Cuban treefrogs. 
Estimates of the parameters of the model with highest 

posterior probability (model 6) imply that occurrence 
probabilities of green treefrogs and squirrel treefrogs 
were significantly lower at sites where Cuban treefrogs 
were present than at sites where this species was absent 

(Fig. 3). Using the odds ratio to express these 
differences, sites without Cuban treefrogs were 9.0 times 
more likely to be occupied by green treefrogs than sites 
with Cuban treefrogs (95% CI ¼ 2.3–35.9), and squirrel 
treefrogs were 15.7 times more likely to occur at sites 
without Cuban treefrogs (95% CI ¼ 3.8–64.3). Estimates 
of w for the Cuban treefrog suggest that there was a 
strong spatial gradient in the occurrence of this species 

B 
(b̂1 ¼�4.99, SE ¼ 1.20). Sites on the western edge of the 
study area are estimated to have been nearly 100% 
occupied, whereas sites on the eastern edge are estimated 
to have had virtually no occurrences of Cuban treefrogs. 

Estimates of the parameters of model 2, which had the 
second highest posterior probability, are very similar to 
those of model 6, with one exception. In model 2 estimates 
of w for Cuban treefrogs were higher in pine savanna 

ˆ B 
habitats than in swamp forest habitats ( b01 1.22, SE 

ˆ B 
¼� ¼

0.71 vs. b02 ¼�2.91, SE ¼ 1.00). However, the spatial 

FIG. 3. Estimates of probabilities of occurrence of native 
treefrog species in the presence and absence of Cuban treefrogs. 
Error bars indicate 95% confidence intervals. 
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gradient in Cuban treefrog occurrence estimated using 
ˆ B 

model 2 (b1 ¼�5.65, SE ¼ 1.75) is similar to the estimate 
obtained using model 6. Qualitatively, the inferences 
obtained using models 2 and 6 are nearly identical. 

DISCUSSION 

The effect of interspecific interactions on species co
occurrence patterns has long been a topic of interest in 
ecology. More recently, the potential for negative 
interactions following the spread of non-native species 
or following the range expansion of native species (e.g., 
due to climate change) has fueled additional interest in 
estimating patterns of species co-occurrence, particularly 
among applied ecologists. Our approach for estimating 
co-occurrence of interacting species provides a useful 
framework wherein the effects of covariates thought to be 
informative of species occurrence or detectability can be 
modeled quite naturally while honoring the nature of the 
interactions among species. We have described this model 
in terms of predator-prey interactions; however, the 
model also applies to other types of asymmetric 
interspecific interactions, such as interference competition 
(Connell 1983). Our model of co-occurrence can therefore 
be used in a variety of ecological inference problems. 
Our model of co-occurrence can be viewed as a 

restricted version of the model developed by MacKenzie 
et al. (2004). In their model the probability that two 
species (A and B) are both present (i.e., co-occur) is 

 by the  denoted parameter w AB. Our approach repa
rameterizes this model to specify an ecological interac
tion between the two species wherein one species is 
assumed to be dominant and the other subordinate. 
Specifically, we assume that the probability of co
occurrence between species A and B is factored into a 
product of conditional and marginal probabilities of 

  w AB species occurrence: ¼ wAjBw B. In addition to 
formalizing the interaction between species (i.e., the 
dependence of species A on occurrence of species B), this 
factorization yields other important benefits. In partic
ular, it allows the effects of spatially varying covariates 
(e.g., measures of habitat) on probabilities of species 
occurrence and co-occurrence to be modeled quite 
naturally. In our factorization, the occurrence probabil
ities of each species can be modeled independently using 
different sets of covariates while honoring the nature of 
the dependence between species induced by their 
interaction. This benefit also applies to our covariate
based models of detection probabilities. 

In contrast to our approach, MacKenzie et al. (2004) 
proposed the reparameterization, w AB ¼ w AwB c and r AB

¼ rArBd, wherein the parameters c and d denote ‘‘species 
interaction factors’’ for the probabilities of species 
occurrence and detection, respectively. In this repa-
rameterization the effects of covariates on w AB are 
specified by assuming separate, logit-scale models for 
each component of w AB (that is, for w A, w B, and c). 
While the construction of covariate-based models of w A

and w B seems simple enough, choosing a set of 

probabilities if species are easily detected ( p 

covariates for modeling c does not seem straightforward 
  if different covariates are selected for w A and w B. For 

example, should the model of c include the union or the 
intersection of the two sets of covariates selected for w A

and w B? In addition to these conceptual difficulties, 
MacKenzie et al. (2004) noted that, in formulating 
models of c, the restrictions imposed by interrelation-
ships among the parameters w AB, w A, and w B must be 
honored. Unfortunately, doing so can cause numerical 
problems during parameter estimation, as evidenced in 
their analysis of terrestrial salamander data (MacKenzie 
et al. 2004). 
Our model of species co-occurrence does not suffer 

from these difficulties. Different covariates can be used 
to model the occurrence or detection probabilities of 
each species without fear of estimation problems caused 
by range restrictions of parameters. Thus, by providing 
estimates of the effects of covariates on patterns of 
species co-occurrence, our parameterization can avoid 
erroneous conclusions that may be reached if such 
covariates are excluded from the model (MacKenzie et 
al. 2004). Furthermore, the results of our simulation 
study indicate that our model yields unbiased estimates 
of species occurrence probabilities provided sample sizes 
are sufficiently large. Our simulations revealed that 
samples of n ¼ 50–100 locations and J ¼ 3 surveys per 
location can provide accurate estimates of occurrence 

� 0.5). 
However, higher sample sizes (n . 200) are needed to 
achieve the same accuracy if species are detected with 
low probability during each survey. 
Our model of co-occurrence was useful in analyzing 

the data collected in surveys of treefrogs in southern 
Florida. Our analysis revealed that green treefrogs and 
squirrel treefrogs are much less likely to occur at sites 
where Cuban treefrogs are present than at sites occupied 
by this non-native species. Of course, our analysis 
cannot reveal the mechanisms by which native treefrog 
species are excluded from sites with Cuban treefrogs, but 
various lines of natural history information are available 
to suggest possible causes of the pattern. Studies on the 
diet of Cuban treefrogs reveal that they are voracious 
predators with a broad dietary niche (Meshaka 2001, 
Owen 2005). Cuban treefrogs in southern Florida 
primarily prey upon invertebrates, such as beetles 
(Coleoptera) and roaches (Blattaria), but vertebrate 
animals also have been found as prey, including at least 
six species of anurans (Meshaka 2001, Maskell et al. 
2003). Adult Cuban treefrogs are larger than the adults 
of the native treefrogs and rates of batrachophagy in 
Cuban treefrogs as high as 10% have been recorded from 
specimens collected in Everglades National Park 
(Meshaka 2001). Therefore, it is likely that some 
combination of predation and competition for inverte
brate prey allows the larger Cuban treefrog to become 
dominant at sites where it occurs. 

If the native treefrogs were exhibiting a behavioral 
response to the presence of Cuban treefrogs, we would 
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expect to see a decrease in detectability of native 
treefrogs at sites where Cuban treefrogs were present. 
Our comparison of models indicated that the detect
ability of native treefrog species was not influenced by 
the presence of Cuban treefrogs (Table 1). This lack of 
evidence for a behavioral response of native treefrogs to 
the predatory Cuban treefrog corroborates findings of 
other studies. Meshaka (2001) examined squirrel tree-
frog and green treefrog behavior in the presence of 
Cuban treefrogs. He observed no avoidance of large 
Cuban treefrogs by the native species and noted that 
they did not struggle effectively when attacked by Cuban 
treefrogs. His conclusion was that the native frogs were 
naive to the predatory threat of Cuban treefrogs. 
Hoffman (2007) performed an experiment to determine 
if Cuban treefrogs exclude green or squirrel treefrogs 
from PVC pipe refugia, but she found no evidence of 
exclusion or avoidance by the native species. 
Collectively, this evidence suggests that the native 
treefrogs do not perceive the Cuban treefrog as a threat, 
which may make them even more vulnerable as prey. 
The geographic pattern of Cuban treefrog occurrence 

is striking (Fig. 2). The first report of Cuban treefrogs 
from the city of Naples, Florida (about 22 km west of 
our westernmost sample location) was by Duellman and 
Crombie (1970). This invasive species is now commonly 
observed on the walls of buildings located within 
housing developments that are rapidly spreading east
ward from the city’s center. It is unknown if Cuban 
treefrogs will continue their eastward expansion into the 
currently unoccupied sites in Big Cypress National 
Preserve, but our results show that the major habitats 
that we surveyed are suitable for Cuban treefrogs. Given 
our results, it seems likely that if Cuban treefrogs 
continue to expand their range into natural areas in 
southern Florida, they will have a negative impact on 
the occurrence of native treefrog species. 
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APPENDIX 

Maximum-likelihood estimation of parameters of species co-occurrence models (Ecological Archives A020-054-A1). 

SUPPLEMENT 

R and WinBUGS code for fitting species co-occurrence models to treefrog data (Ecological Archives A020-054-S1). 
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